COUNTY OF SUFFOLK

STEVEN BELLONE
SUFFOLK COUNTY EXECUTIVE

DEPARTMENT OF HEALTH SERVICES

GREGSON H. PIGOTT, M.D., M.P.H. Commissioner

August 31, 2023

Mr. John M. Spritzer III, P.E.
Delta Specialty Precast Concrete Engineers
860 Hooper Road
Endwell, NY 13760
Sent via e-mail: precast@delta-eas.com

Re: NS-008 750 Gallon HS-20 Pretreatment Tank

Dear Mr. Spritzer,

The Suffolk County Department of Health Services, Division of Environmental Quality, Office of Ecology has received and reviewed your design drawings and computations prepared for Advanced Wastewater Solutions., Project No. 2023.030.002, with your signature and sealed on 8/15/2023 for the "5'-8" x 5'-3" ID 750-Gallon Pretreatment Tank Designed for HS-20 Live Load".

Based on the information provided, the Department of Health Services approves the use of this 750 gallon tank in traffic areas with a maximum burial depth of 2.5 -feet. A copy of this letter and the signed and sealed design report will remain on file in the Office of Wastewater Management for future reference.

If you have any questions, please do not hesitate to contact me at (631) 852-5811.

Sincerely,

Ken Zegel, P.E.
Principal Public Health Engineer
Chief, Office of Ecology
cc: John Sohngen, P.E. (SCDHS)
Vincent Ernst (Delta)
Kevin McGowin \& Bryan McGowin (Advanced Wastewater Solutions)
Peter Mercurio (Coastal Pipeline Products)

PREPARED BY:

ADELTA

860 Hooper Road, Endwell, New York 13760
TEL: 607-231-6600 FAX: 607-231-6650
EMAIL: precast@delta-eas.com
www.delta-eas.com

ACCEPTED BY THE SUFFOLK COUNTY DEPARTMENT OF HEALTH SERVICES (DEPARTMENT) BASED ON INFORMATION PROVIDED BY ENGINEER.

The Department has reviewed this submittal for completeness and is hereby approved for use in Suffolk County. This approval is solely for the model(s), units(s) and/or structure(s) included in the engineering design drawings and calculations provided by the licensed design professional(s). Any changes or modifications to the approved design must be submitted for review and approval by the Department prior to its use in Suffolk County. The Department is not responsible for any errors, omissions, failures, construction defects or installation errors that may occur due to design professional, manufacturer, distributor or installer oversight or negligence.

Ken Zegel, P.E.

SPECIFICATIONS

24" Diameter Campbell Pattern 1007 "SANITARY" Or Approved Equal

Brick Adjustment \& Casting

SECTION

1. Design in Accordance With ASTM C478 For AASHTO HS-20 Loading.
2. Earth Load $=0-2.5 \mathrm{ft}$
3. Concrete 4000psi @ 28 Days
4. Rebar - ASTM A-615 Grade 60 Welded Wire Mesh ASTM A-1064
5. Concrete Cover $11 / 4$ UNO
6. Storage Capacity 188.66 Gallons per ft
7. Additional Reinforcing Around Openings Equal to the Bars Interrupted, Half Each Side 8. Openings Trimmed with Diagonal \#4 Bars Extended Min 12" Beyond Openings, Bent To Maintain Bar Cover
8. Ground Water Table at finished Grade.
9. Buoyancy Safety Factor $=1.50$

Note:

Precast Manufacturer will be Identified by an Imprinted Label on the Interior Wall of the Tank

To Grade, 2'-0" Maximum

JOINT DETAIL

Welded Wire Mesh
As $=0.17 \mathrm{sq}-\mathrm{in} / \mathrm{ff}$ Typ.
(Center $1 / 3 \mathrm{In}$ Wall)
Tee Baffle Conforming to NSF Standard 46, Extend 18" Below Liquid Level

Advanced Waster water Solutions			
Product:	750 Gallon Pre-Treatment Tank		
Proj	date	dwn. bydvg. ho.	
$23-0721$	$8 / 15 / 23$	VCE	PT-750

1. Material: Gray Cast Iron, ASTM A48-83,Class 30B;
2. AASHTO HS20-44 Highway Loading;
3. Bearing surface at seat of cover and frame shall
be machined for uniform fit;
4. Cover shall have two non-penetrating pick holes and be bolted to frame with two recessed equally spaced $1 / 2^{\prime \prime}-13$ stainless steel hex head bolts;
5. Castings supplied without surface coating;

Notes:

1. Material: Gray Cast Iron, ASTM A48-83,Class 30B;
2. AASHTO HS20-44 Highway Loading;
3. Bearing surface at seat of cover and frame shall be machined for uniform fit;
4. Castings supplied without surface coating.

5	CAMPBELL FOUNDRY COMPANY Harrison, N.J. 07029 Phone: 973-483-5480 FAX: 973-483-1843			
(1/2" $111^{\prime \prime}-0^{\prime \prime}$				
OnE	8/03			
Heavy Duty Manhole Frame and Cover				
Pattern Number: 4155				

SPECIALTY PRECAST CONCRETE ENGINEERS 860 Hooper Road, Endwell, NY 13760 delta-eas.com

JOB: 2023.030 .002			
DESCRIPTION:	750 Gallon Pretreatment Tank		
SHEET NO.:	of		
CALCULATED BY:	ARN	Date	$5 / 9 / 23$
CHECKED BY:	Date		

Phone (607) 231-6600
Fax (607) 231-6650

PRECAST ROUND MANHOLE DESIGN

DESCRIPTION

Inside Diameter (I.D.) =	5.67 ft
Wall Height (I.D.) =	5.25 ft
Wall Thickness $=$	4.00 in
Base Slab Thickness	4.00 in
Cover Slab Thickness =	6.00 in
Earth Cover (Min.) =	0.00 ft
Earth Cover (Max) =	2.50 ft
Min. Watertable Depth =	0.00 ft

TECHNICAL DATA

Capacity Reduction Factors:

$\phi-$ Moment	$=0.90$
$\phi-$ Shear	$=0.85$

Round Manhole Plan View (All dimensions I.D.)

Round Manhole Elevation View (Joints not shown for clarity) (All dimensions I.D.)

References:

1. "Specifications for Highway Bridges, 17th Ed." - AASHTO
2."Building Code Requirements for Structural Concrete" - ACI 318.
2. "Standard Specification for Precast Reinforced Concrete Manhole Sections" - ASTM

C478.
4. "Standard Practice for Minimum Structural Design Loading for Monolithic or Sectional

Precast Concrete Water and Wastewater Structures" - ASTM C890

JOB:	2023.030.002		
DESCRIPTION:	750 Gallon Pretreatment Tank		
SHEET NO.:	of		
CALCULATED BY:	ARN	Date	$5 / 9 / 23$
CHECKED BY:	Date		

Phone (607) 231-6600
Fax (607) 231-6650

COVER SLAB DESIGN CONCENTRATED LIVE LOAD

Wall Thickness	$=$	4.00 in
Slab Thickness	$=$	6.00 in
Earth Cover	$=1.00 \mathrm{ft}$	
Bar cover	$=1.50 \mathrm{in}$	
Impact	$=1.30$	

	Two Way Slab
Avg. Span (s)	$=\frac{5.29 \mathrm{ft}}{}$
Dead Loads: Soil	$=0.12 \mathrm{ksf}$
Concrete	$=0.08 \mathrm{ksf}$
Additional Uniform Dead Load	$=0.00 \mathrm{ksf}$
Total (wdl)	$=0.20 \mathrm{ksf}$

$\mathrm{Mdl}=\mathrm{wdl} \mathrm{I}^{2} / 8$ * (0.5) $=0.34 \mathrm{kip}-\mathrm{ft}$

$$
\mathrm{e}=4+.06 \mathrm{~S}=\quad 4.32 \mathrm{ft}
$$

(AASHTO 3.24.3.2)
$\mathrm{p}=(\mathrm{Pw}$ * $\operatorname{lmpact}) / \mathrm{e}=4.82 \mathrm{kips} / \mathrm{ft}$

$$
\mathrm{Mll}=\mathrm{ps} / 4^{*}(0.5)=3.19 \mathrm{kip}-\mathrm{ft}
$$

$$
\mathrm{Mu}=\gamma\left[\beta(\mathrm{L}+\mathrm{I}) * \mathrm{Mll}+\beta \mathrm{D}^{*} \mathrm{Mdl}\right]=7.36 \text { kip-ft }
$$

$$
\text { Avg 'd' = } 3.88 \text { in }
$$

Req. Bar Size and Spacing

$$
\begin{aligned}
\rho=A s / b^{*} d & =0.01131046 \\
\rho^{*} n & =0.09098574
\end{aligned}
$$

Flexure Check:

$\mathrm{a}=$ AsFy / 0.85f'cb $=0.773$ in $\phi \mathrm{Mn}=\phi^{*} \mathrm{As}^{*} \mathrm{Fy}^{*}(\mathrm{~d}-(\mathrm{a} / 2))=8.26 \mathrm{kip}-\mathrm{ft} \quad \mathrm{OK}$

Cracking Check:

$$
k=\sqrt{\left(2 \rho n+\rho n^{2}\right)-\rho n=} \quad 0.345
$$

$$
j=1-(k / 3)=0.885
$$

$$
\mathrm{M}=\mathrm{Mdl}+\mathrm{MII}=3.53 \mathrm{kip}-\mathrm{ft}
$$

$$
\mathrm{fs}=\mathrm{M} / \mathrm{As} \mathrm{jd}=23.46 \mathrm{ksi} \quad \text { OK }
$$

$$
\mathrm{dc}=2.313 \mathrm{in}
$$

$$
\mathrm{A}=2 \text { * } \mathrm{dc} * \text { Spacing }=\quad 32.4 \mathrm{in}^{2}
$$

$$
Z=\text { fs }^{3} \sqrt{ }\left(\mathrm{dc}^{*} A\right)=99 \mathrm{kips} / \mathrm{in} \quad \text { OK }
$$

Note: Shear considered satisfactory per AASHTO 3.24.4
Check minimum reinforcement requirements per AASHTO 8.17.1
Note: Minimum As shall be at least $1 / 8 \mathrm{sq}$. in./ft (AASHTO 8.20.1) $\phi \mathrm{Mn} \geq 1.2^{*} \mathrm{Mcr}$
$\mathrm{Mcr}=2.85 \mathrm{kip}-\mathrm{ft}$
1.2 Mcr $=3.42 \mathrm{kip}-\mathrm{ft} \quad$ OK

SPECIALTY PRECAST CONCRETE ENGINEERS 860 Hooper Road, Endwell, NY 13760
delta-eas.com

JOB: 2023.030 .002			
DESCRIPTION:	750	Gallon Pretreatment Tank	
SHEET NO.:	of		
CALCULATED BY:	ARN	Date	$5 / 9 / 23$
CHECKED BY:	Date		

Phone (607) 231-6600
Fax (607) 231-6650

COVER SLAB DESIGN

CONCENTRATED LIVE LOAD

Wall Thickness	$=$	4.00 in
Slab Thickness	$=$	6.00 in
Earth Cover	$=1.50 \mathrm{ft}$	
Bar cover	$=1.50 \mathrm{in}$	
Impact	$=1.20$	

	Two Way Sla
Avg. Span (s) =	5.29 ft
ad Loads: Soil =	0.30 ksf
Concrete $=$	0.08 ksf
rm Dead Load =	0.00 ksf
Total (wdl) =	0.38 ksf

$$
\begin{array}{rlrl}
\mathrm{Mdl}=\mathrm{wdl\mid} / \mathrm{I}^{*}(0.5) & = & 0.66 \mathrm{kip}-\mathrm{ft} \\
\mathrm{e}=4+.06 \mathrm{~S} & = & 4.32 \mathrm{ft} \\
\mathrm{p}=(\mathrm{Pw} * \mathrm{lmpact}) / \mathrm{e} & = & 4.45 \mathrm{kips} / \mathrm{ft} \\
\mathrm{Mll}=\mathrm{ps} / 4^{*}(0.5) & = & 2.94 \mathrm{kip}-\mathrm{ft} \\
\mathrm{Mu}=\gamma\left[\beta(\mathrm{L}+\mathrm{I}) * \mathrm{Mll}+\beta \mathrm{D}^{*} \mathrm{Mdl}\right]= & 7.24 \mathrm{kip}-\mathrm{ft} \\
& \\
\text { Avg 'd' } & =3.88 \mathrm{in}
\end{array}
$$

Req. Bar Size and Spacing Main Reinforcing: As $=0.53 \mathrm{in}$.2/ft. | | Use | $\# 5$ | @ |
| :--- | :--- | :--- | :--- |
| (Ea. Dir.) | | | |

$$
\begin{array}{rl}
\rho=A s / b^{*} & d=0.01131046 \\
\rho^{*} n & =0.09098574
\end{array}
$$

Flexure Check:

$\mathrm{a}=$ AsFy / 0.85 f 'cb $=0.773 \mathrm{in}$
$\phi \mathrm{Mn}=\phi^{*} \mathrm{As}^{*} \mathrm{Fy}^{*}(\mathrm{~d}-(\mathrm{a} / 2))=8.26 \mathrm{kip}-\mathrm{ft} \quad \mathrm{OK}$
Cracking Check:
$k=\sqrt{ }\left(2 \rho n+\rho n^{2}\right)-\rho n=0.345$
$\mathrm{j}=1-(\mathrm{k} / 3)=0.885$
$\mathrm{M}=\mathrm{Mdl}+\mathrm{Mll}=3.60 \mathrm{kip}-\mathrm{ft}$
fs $=\mathrm{M} /$ As $\mathrm{jd}=23.92 \mathrm{ksi} \quad$ OK
$\mathrm{dc}=2.313 \mathrm{in}$
$\mathrm{A}=2$ * dc * Spacing $=32.4 \mathrm{in}^{2}$
$Z=$ fs $\sqrt[3]{ }(d c$ * $A)=101 \mathrm{kips} / \mathrm{in} \mathrm{OK}$

Note: Shear considered satisfactory per AASHTO 3.24.4
Check minimum reinforcement requirements per AASHTO 8.17.1
Note: Minimum As shall be at least $1 / 8 \mathrm{sq}$. in./ft (AASHTO 8.20.1)
$\phi \mathrm{Mn} \geq 1.2^{*} \mathrm{Mcr}$
$\mathrm{Mcr}=2.85 \mathrm{kip}-\mathrm{ft}$
$1.2 \mathrm{Mcr}=3.42 \mathrm{kip}-\mathrm{ft} \quad \mathrm{OK}$ SPECIALTY PRECAST CONCRETE ENGINEERS 860 Hooper Road, Endwell, NY 13760 delta-eas.com

JOB: 2023.030 .002		
DESCRIPTION:	750 Gallon Pretreatment Tank	
SHEET NO.:	of	
CALCULATED BY:	ARN	Date
CHECKED BY:	5/9/23	

Phone (607) 231-6600
Fax (607) 231-6650

WALL DESIGN

Height $=$	5.25 ft
Wall Thickness $=$	4.00 in
Inside Diameter=	5.67 ft
Outside Diameter $=$	6.33 ft
Average $=$	6.00 ft

Analyze compressive force at bottom of wall
Compressive force ' P '=wdl/2=
Compressive stress $\mathrm{fc}=\mathrm{P} / \mathrm{A}=$
Compressive stress allowable=.45f'c=
Result=
Minimum reinforcing required= ref ASTM C478, Art. 14.4.1.1

PRESSURE DIAGRAM

Soil Loading Diagram
W ksf

Horizontal line indicates top of wall
Lateral Earth Pressure
Eq. Lat. Press. $=0.091$ kcf
$\mathrm{W} 2=0.35 \mathrm{ksf}$
$\mathrm{W} 3=0.83 \mathrm{ksf}$
(Surcharge Applied Over Entire Height of Unit)

DESCRIPTION:		
750 Gallon Pretreatment Tank		
SHEET NO.:	of	
CALCULATED BY:	ARN	Date
CHECKED BY:	Date	

Fax (607) 231-6650

BASE SLAB DESIGN

ID	OD	
Inside Diameter $=$	5.67 ft	6.33 ft
Span $=$	5.29 ft	
Wall Thickness $=$	4.00 in	
Slab Thickness $=$	4.00 in	
Number of Wheels $=$	1	

Vertical Loads:

Soil $=9.45 \mathrm{kips}$
Cover slab $=2.36 \mathrm{kips}$
Walls $=\quad 4.95$ kips Other
Total Dead Load $=16.76$ kips Live Load $=16.00$ kips

Net upward bearing pressure:

Dead Load, fbdl = Hydrostatic, fbhyd =	0.53 ksf 0.54 ksf	(8.58 ft * 0.0624 kcf)	<== Controls
Live Load, fbll =	+ 0.51 ksf		
w =	1.04 ksf		
Wu =	1.80 ksf		
$\mathrm{MII}=\mathrm{fbll} \mathrm{I}^{2} / 8$ * (0.5) $=$	$0.89 \mathrm{kip}-\mathrm{ft}$		
Mdl= fbdl ${ }^{2} / 8$ * (0.5) OR			
Mhydr $=$ fbhyd $\mathrm{I}^{2} / 8$ * (0.5) $=$	0.94 kip-ft		
$\mathrm{Mu}=\mathrm{wu} \mathrm{I}^{2} / 8{ }^{*}(0.5)=$	3.14 kip-ft		
Bar Cover $=$	1.50 in		
Avg 'd' =	1.88 in		

Req. Bar Size and Spacing

$$
\begin{aligned}
\rho=\text { As } / b^{*} d & =0.023374945 N G \\
\rho^{*} n & =0.188037189
\end{aligned}
$$

Flexure Check:

$\mathrm{a}=$ AsFy $/ 0.85 \mathrm{f}$ 'cb $=0.773 \mathrm{in}$
$\phi \mathrm{Mn}=\phi^{*} \mathrm{As}^{*} \mathrm{Fy}^{*}(\mathrm{~d}-(\mathrm{a} / 2))=3.52 \mathrm{kip}-\mathrm{ft} \quad \mathrm{OK}$
Cracking Check:
$\mathrm{k}=\sqrt{\left(2 \rho \mathrm{n}+\rho \mathrm{n}^{2}\right)-\rho \mathrm{n}=} \quad 0.453$
$j=1-(k / 3)=0.849$
$\mathrm{M}=\mathrm{Mdl}+\mathrm{Mll}=1.82 \mathrm{kip}-\mathrm{ft}$
$\mathrm{fs}=\mathrm{M} / \mathrm{As} \mathrm{j} d=26.15 \mathrm{ksi}$
$\mathrm{dc}=2.313 \mathrm{in}$
$\mathrm{A}=2$ * $\mathrm{dc} *$ Spacing $=32.4 \mathrm{in}^{2}$
$Z=f s^{3} \sqrt{ }(d c * A)=110$ kips $/ \mathrm{in} \quad O K$
Shear Check:
Vu@d=Wu *[span/2-d] *
$(0.5)=\quad 2.24 \mathrm{kips} / \mathrm{ft}$
(AASHTO 8-49) $\quad \phi \mathrm{Vc}=2.42 \mathrm{kips} / \mathrm{ft} \quad \mathrm{OK}$
Check minimum reinforcement requirements per AASHTO 8.17.1
Note: Minimum As shall be at least $1 / 8$ sq. in./ft (AASHTO 8.20.1)
$\phi \mathrm{Mn} \geq 1.2^{*} \mathrm{Mcr}$
Mcr $=1.26$ kip-ft
1.2 $\mathrm{Mcr}=1.52 \mathrm{kip}-\mathrm{ft} \quad$ OK

Check Buoyancy

Inside Diameter (D)	5.67 ft	Top Slab Thickness Wall Thickness	6.00 in Inside Height (H) Earth Fill (F)	5.25 ft	Bottom Slab Thickness

Downward Forces

Upward Buoyant Force
$\pi{ }^{*} \mathrm{OD}^{2} / 4^{*}(\mathrm{OH}+\mathrm{F}-\mathrm{WT}-\mathrm{Hg})^{*} \mathrm{Ww}=$

	$\frac{11,958 \mathrm{lbs}}{}$Difference Safety Factor $0,335 \mathrm{lbs}$ $0.72<1.50 \mathrm{NG}$

Note: The safety factor is less than required. See next sheet for solution 860 Hooper Road, Endwell, NY 13760 delta-eas.com
Phone (607) 231-6600 Fax (607) 231-6650

WALL OPENINGS:
Length Width

1		
2		
3		
4		
	Dia	Qty
1	7 in	2
2		
3		
4		
5		

$\begin{array}{cc}\text { Total: } & 0.53 \mathrm{sf} \\ \text { Equiv. Void: } & 27 \text { \# }\end{array}$

TOP SLAB OPENINGS:

SOLUTION - Add an extension to the outside of the base slab to engage the soil outside of the structure

Inside Diameter (ID)	5.67 ft	Top Slab Thickness	6.00 in	Outside Dia (OD)	6.33 ft
		Wall Thickness	4.00 in		
Inside Height (Ht)	5.25 ft	Bottom Slab Thickness	4.00 in	Outside Height (OH)	6.08 ft
Earth Fill (F)	0.00 ft	Water table depth (WT)	0.00 ft	Base Extention =	5.00 in
Unit weight of Concre	(Wc)	150 pcf	Height of Str	cture above grade (Hg)	0.00 ft
Unit weight of Soil (W)		120 pcf		Base Slab Dia.(w/Ext.):	7.17 ft
Unit weight of Water		62.4 pcf		Safety Factor Req'd	1.50

Downward Forces

Consideration of Soil Wedge not Required
Additional Downward Force Due to Soil Wedge

