COUNTY OF SUFFOLK

STEVEN BELLONE SUFFOLK COUNTY EXECUTIVE

DEPARTMENT OF HEALTH SERVICES

GREGSON H. PIGOTT, M.D., M.P.H. Commissioner

October 17, 2022

Mr. Tamer Osman, P.E. Delta Specialty Precast Concrete Engineers 860 Hooper Road Endwell, NY 13760 Sent via e-mail: precast@delta-eas.com

Re: Fuji Clean CEN21 Precast Containment Vault

Dear Mr. Osman,

The Suffolk County Department of Health Services, Division of Environmental Quality, Office of Ecology has received and reviewed your design drawings and computations prepared for Roman Stone Construction Company, Project No. 2021.487.001, with your signature and sealed on 10/11/2022 and 10/15/2022 for the "SCDHS (CEN21) 16'-0" x 7'-0" x 8'-0" ID Precast Containment Vault Designed for HS-20 Vehicle Live Load".

Based on the information provided, the Department of Health Services approves the use of this precast concrete structure as a containment vault for the Fuji Clean model CEN21 Innovative and Alternative Onsite Wastewater Treatment System (I/A OWTS) in traffic areas, with a burial depth of one (1) to three (3) feet below finished grade and water table below the bottom of the structure.

This approval requires that at least one readily accessible suction line (minimum ¾-inch diameter) be permanently installed within the containment vault extending from a maximum of 3-inches above the vault's bottom to its access riser, a maximum of 1-foot below finished grade. This suction line is required to be present to allow for purging of trapped storm-water with the use of a portable, self-priming pump as part of routine operations and maintenance servicing of the I/A OWTS.

A copy of this letter and the signed and sealed design report will remain on file in the Office of Wastewater Management for future reference.

DIVISION OF ENVIRONMENTAL QUALITY Office of Ecology 360 Yaphank Avenue, Suite 2B, Yaphank NY 11980 P:(631) 852-5750 F:(631) 852-5812 If you have any questions, please do not hesitate to contact me at (631) 852-5811.

Sincerely,

No Jul

Ken Zegel, P.E. Principal Public Health Engineer Chief, Office of Ecology

cc: John Sohngen, P.E. (SCDHS) Scott Samuelson (Fuji Clean USA) Kevin McGowin (Advanced Wastewater Solutions) Bryan McGowin (Advanced Wastewater Solutions)

DIVISION OF ENVIRONMENTAL QUALITY Office of Ecology 360 Yaphank Avenue, Suite 2B, Yaphank NY 11980 P:(631) 852-5750 F:(631) 852-5812

ACCEPTED BY THE SUFFOLK COUNTY DEPARTMENT OF HEALTH SERVICES (DEPARTMENT) BASED ON INFORMATION PROVIDED BY ENGINEER.

The Department has reviewed this submittal for completeness and is hereby approved for use in Suffolk County. This approval is solely for the model(s), units(s) and/or structure(s) included in the engineering design drawings and calculations provided by the licensed design professional. Any changes or modifications to the approved design must be submitted for review and approval by the Department prior to its use in Suffolk County. The Department is not responsible for any errors, omissions, failures, construction defects or installation errors that may occur due to design professional, manufacturer, distributor or installer oversight or negligence.

10/17/2022 APPROVAL DATE

DESIGN COMPUTATIONS FOR

SDCHS (CEN21) 16'-0" x 7'-0" x 8'-0" ID Precast Containment Vault Designed for HS-20 Vehicle Live Load

PREPARED FOR:

Roman Stone Construction Company 85 South 4th Street Bay Shore, New York 11706

10-15-22

State License # 111870

860 Hooper Road, Endwell, New York 13760 TEL: 607-231-6600 FAX: 607-231-6650 EMAIL: precast@delta-eas.com www.delta-eas.com

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, ARCHITECT, LANDSCAPE ARCHITECT, OR LAND SURVEYOR, TO ALTER AN ITEM IN ANY WAY. IF AN ITEM BEARING THE STAMP OF A LICENSED PROFESSIONAL IS ALTERED, THE ALTERING ENGINEER, ARCHITECT, LANDSCAPE ARCHITECT, OR LAND SURVEYOR SHALL STAMP THE DOCUMENT AND INCLUDE THE NOTATION "ALTERED BY" FOLLOWED BY THEIR SIGNATURE, THE DATE OF SUCH ALTERATION, AND A SPECIFIC DESCRIPTION OF THE ALTERATION.

Project Number: 2021.487.001

JOB: 202	0.487.001			
DESCRIPTION:	16'-0" x 7	''-0" x 8'	-0" ID Vault	
SHEET NO.:	of			
CALCULATED B	Y: CCFH	Date	01/13/2021	
CHECKED BY:	Da	te		

JOB: 2	2020.4	87.001					
DESCRIPTIC	DN: 1	16'-0" x	7'-0"	x 8'-()" ID Vau	lt	
SHEET NO.:		of					
CALCULATE	D BY:	CCFH	Da	te	01/13/2	021	
CHECKED BY	(:	D)ate				
							_

EQUIVALENT LATERAL FLUID PRESSURE: 0.33 ka = Unit Wt. of Soil = 120 pcf Max. Fill Above Structure = 3.00 ft. (Worst Case) Structure Inside Ht. = 8.00 ft. 8.00 in. Top Slab Thickness = Min. Watertable Depth = 12.33 ft. Lateral Pressure (Dry) = 39.6 pcf (Ka*Soil Wt.) Lateral Pressure (Sat.) = 81.4 pcf (Ka*(Soil Wt.-62.4pcf)+62.4pcf)

	~ ~ ~ ~
Equivalent Lateral Pressure =	39.6 pct

SCDHS Approval for Use pg. 4 of 14

٦

JOB: 2020.	487.001		
DESCRIPTION:	16'-0" x 7	'-0" x 8'·	-0" ID Vault
SHEET NO.:	of		
CALCULATED BY	CCFH	Date	01/13/2021
CHECKED BY:	Da	te	

Determine Uniform Load From Wh	eel Live Lo	ad for Val	rious Fill I	Depths	4	
Distance Between CL of Wheel and CL of Truck: 3 Π Wheel Load: 16 kips						
Distribution Length = 1.75 x De Distribution Width = 1.75 x De	epth of Fill + epth of Fill +	Length of Width of I	Dual Whe Dual Whee	el Dimensi el Dimensio	ions ons	
Dua 6.00 ft.	al Wheel Dii	mensions:	Length 1.67 ft.	Width 0.83 ft.	AASHTO	3.30
	Depth of Fill (ft) 3.0	Distrib. Length 6.92	Distrib. Width 6.08	Lengths Overlap? YES	DLA ft^2 78.6	Uniform Load psf 407.4
ے بے	3.5 4.0	7.80 8.67	6.96 7.83 8.71	YES YES	95.9 114.9 135.3	333.5 278.6 236.5
14.0 f Travel	5.0 5.5	10.42 11.30	9.58 10.46	YES	157.3 180.8	203.4 177.0
o⊔ Length □	6.0 6.5 7.0	12.17 13.05 13.92	11.33 12.21 13.08	YES YES YES	205.9 232.4 260.6	155.4 137.7 122.8
→ → → → → → → → → → → → → → → → → → →	7.5 3.0 3.0	14.80 6.92 6.92	13.96 6.08 6.08	YES YES	290.2 78.6 78.6	110.3 407.4 407.4
	5.0	Design Design I	Min Fill = Max Fill =	3.00 ft 3.00 ft	78.6 78.6	407.4 407.4 407.4
	Note: If de	sign fill < 3	3', design נ	using conce	entrated lo	ad case
FIG. 4 Distributed Load Area (REF "ASTM C 890-91")						
				* LIGENSET	am OB57 10-15	39 HONALEU

Page 5 of 12

ADFITA		JOE DES	3: 2020.4 CRIPTION:	487.001 16'-0" x 7'-0" x	8'-0" ID Vault
SPECIALTY PRECAST CONCRETE ENGINEE	RS	<u>SHE</u>	ET NO.:	Of CCFH Dat	e 01/13/2021
860 Hooper Road, Endwell, NY 137	60	CHE	CKED BY:	Date	e 01/13/2021
delta-eas.com					
Phone (607) 231-6600 Fax (607) 231-6650					
Tax (007) 251 0050					
COVER SLAB DESIGN					
AASHTO 3.24.6					
Length (I.D.) =	16.00 ft	E	arth Cover =	1.00 ft	
Width (I.D.) =	7.00 ft		Bar cover =	1.00 in]
Wall Thickness =	6.00 in		Impost	1.20	, I
Slab Thickness =	0.00 11		impact =	1.30	J
	Short Span	-		Long Span	.
Span (s) =	7.50 ft			16.50 ft	
Concrete =	0.12 KSI 0.10 ksf			0.12 KSI 0.10 ksf	
Additional Uniform Dead Load =	0.00 ksf]		0.00 ksf] [
Total (wdl) =	0.22 ksf	-		0.22 ksf	-
2-May alob for (Distributed)	1 000		6 1)	0.000	
2-way slab fac. (Distributed) = 2 -way slab fac. (Concentrated) =	1.000	(AASITIO 3.24.	0.1)	0.000	
Mdl=wdl $l^2/8 * (2-way slab factor) =$	1.55 kip-ft			0.00 kip-ft	
e = 4+.06S =	4.45 ft	(AASHTO 3.24.	3.2)	4.99 ft	
p = (Pw * Impact) / e =	4.67 kips/ft			4.17 kips/ft	
MII = ps/4*(2-way slab factor) =	8.76 kip-ft	-		0.00 kip-ft	OF NO.
$Mu = \gamma[\beta_{(L+I)}*MII + \beta_{D}*MdI] =$	15.88 kip-ft			0.00 kip-ft	TE OF NEW
d -	6 60 in			6 06 in	S/10ME SAN
u –	0.03 11			0.00 11	the second
Bottom Mat Req. Bar Size	and Spacing	L			5 am reprin
Short Span: As =	0.61 in. sq/ft	. Use # 5	@	6.0 in	3
Long Span: As =	0.31 in. sq/ft	Use #5	@ Deinfereing	12.0 in	085739
	0.22 in. sq/it	. OK, WIN. DISt.	Reinforcing	Met	POFESSIONAL
$\rho = \left[1 - \left(\sqrt{1 - \frac{2 \cdot M_u}{\phi b d^2 \cdot .85 f' c}} \right) \right] \cdot \frac{.85 f' c}{f_y} =$	0.00691224			0.000000	10-15-22
ρ* n =	0.04973441			0	
Flexure Check:		7	1		, l
Moment, ΦΜ (ACI 318 Table 21.2.2)=	0.90	J		0.90	J I
a = ASFY / 0.001 CD = c=a/ β 1=	0.722 IN			0.361 m	
Reinforcing Strain $\mathcal{E} = (d-c)/c^* 0.003 - c^*$	0.00	tension controlle	he	0.0373	tension controlled
	0.002			0.0070	
$b_{ty} = Iy/E_s = b_{ty} = b_{ty}/E_s = b_$	U.UUZ	OK		0.002 8 12 kin ft	ОК
$\psi(u) = \psi AS Fy (u-(a/2)) =$ Cracking Reinforcing Spacing:	ACI 318 - Tal	ole 24.3.2		0.12 KIP-IL	
$k = \sqrt{(2\rho n + (\rho n)^2)} - \rho n =$	0.270			0.000	
j = 1 - (k/3) =	0.910			1.000	
M = MdI + MII =	10.31 kip-ft			0.00 kip-ft	
fs = M / As j d =	33.13 ksi	OK		0.00 ksi	ОК
$s = min(15(40000/fs)-2.5c_c, 12*40000/f_s) =$	14 in	OK		99 in	ОК
Note: Shear considered satisfactory per A	AASHTO 3.24	.4			

JOB: 2020.	487.001			
DESCRIPTION:	16'-0" x 7	7'-0" x 8'	-0" ID Vault	
SHEET NO.:	of			
CALCULATED BY	: CCFH	Date	01/13/2021	
CHECKED BY:	Da	ite		

COVER SLAB DESIGN AASHTO 3.24.6 (Continued)

MINIMUM REINFORCING - ACI 318 - Table 7.6.1.1

Short Span

As, min = Max of

((0.0018*60,	000)/fy) * Ag =	0.17 in²/ft	<= Controls
<u>OR</u>	0.0014 * Ag =	0.13 in²/ft	

Long Span

As, min = Max of

 $((0.0018*60,000)/fy) * Ag = 0.17 in^2/ft <= Controls$ OR 0.0014 * Ag = 0.13 in^2/ft OK, As Provided > As Min.

OK, As Provided > As Min.

10-15-22

JOB:	2020.48	37.001			
DESCRIPTI	ON: 10	6'-0" x 7	7'-0" x 8'	-0" ID Vault	
SHEET NO	.:	of			
CALCULATI	ED BY:	CCFH	Date	01/13/2021	
CHECKED B	SY:	Da	ate		

COVER SLAB DESIGN UNIFORM LIVE LOAD MAX FILL				SH	AMER OSALA
ASTWI CO90					to the later
Length (I.D.) =	16.00 ft.			Elan	100 Boundary
Width (I.D.) =	7.00 ft.			11819	
Wall Thickness =	6.00 in			1131	
Slab Thickness =	8 00 in			1201	
Forth Cover -	2.00 #			No.	085739
Earth Cover =	3.00 IL	7		PO	DEFERSIONAL
Bar cover =	1.00 in				ESSION
					10 15 22
	Short Span			Long Span	10-15-22
Span =	7.50 ft.	-	_	16.50 ft.	
Dead Loads Soil =	0.36 ksf			0.36 ksf	
Concrete -	0.10 kef			0.10 kef	
Additional Uniform Dead Lead -	0.10 KSI	7		0.10 KSI	
Additional Uniform Dead Load =	0.00 KSf			0.00 KST	
Total (wdl) =	0.46 ksf			0.46 ksf	
2 Wey slop for (Distributed) -	1 000			0.000	
2-way stab fac. (Distributed) =	1.000	(AASHIO 3.24.0.1)		0.000	
Mdl=wdl I ² / 8 * (2-way slab factor) =	3.23 kip-ft			0.00 kip-ft	
DLA =	78.55 sf			78.55 sf	
WII =	0.407 ksf			0.407 ksf	
MII=wII $l^2/8 * (2$ -way slab factor) =	2.86 kin ft			0.00 kin ft	
	2.00 Kip-it			0.00 Kip-it	
$Mu = \gamma [\beta_{(L+I)} MII + \beta_D MdI] =$	8.46 kip-ft			0.00 kip-ft	
d =	6 69 in			6.06 in	
ŭ	0.00 11			0.00 m	
Reg. Bar Size and Spacing					
Short Span: As =	0.61 in ad/ft			6 0 in	l
Short Span. As –	0.01 III. Sq/II.	Use # 5	<u>w</u>	0.0 11	
Long Span: As =	0.31 in. sq/ft.	Use #5	@	12.0 IN	
$\begin{bmatrix} 1 & (1 & 2 \bullet M_{\mu}) \end{bmatrix}$.85 f'c	0 00250605			0	
$\rho = \left 1 - \left \sqrt{1 - \frac{dbd^2 \bullet .85 f'c}{dbd^2 \bullet .85 f'c}} \right \right \bullet \frac{dc}{f} =$	0.00359605			0	
ρ*n=	0.02587405			0	
Flexure Check:		-	_		
Moment, ΦM (ACI 318 Table 21.2.2)=	0.90			0.90	
a = AsFy / 0.85f'cb =	0.722 in	_	-	0.361 in	-
c=a/β1=	0.90			0 45	
$P_{\text{cinferming}} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} \right)$	0.0400	to main manufuelle d		0.0070	tousion contuelled
Remoting Strain $\varepsilon_t = (d-c)/c \ 0.003 =$	0.0192	tension controlled		0.0373	tension controlled
$\mathcal{E}_{ty} = ty/E_s =$	0.002			0.002	
ϕ Mn = ϕ *As*Fy*(d-(a/2)) =	17.47 kip-ft	OK		8.12 kip-ft	OK
Cracking Reinforcing Spacing:	ACI 318 - Tab	ble 24.3.2		•	
$k = \sqrt{2} \cos \frac{1}{2} \cos \frac{1}{2} \sin \frac{1}{2}$	0 202			0.000	
$\kappa = \sqrt{2\rho_1 + (\rho_1) - \rho_1} =$	0.203			0.000	
J = 1 - (K/3) =	0.932			1.000	
M = MdI + MII =	6.10 kip-ft			0.00 kip-ft	
fs = M / As j d =	19.13 ksi	OK		0.00 ksi	OK
$s = min(15(40000/fs)-2.5c_{\circ}, 12*40000/f_{\circ}) =$	25 in	OK		99 in	ОК
((, , , , , , , , , , , , , , , , , ,					

delta-eas.com Phone (607) 231-6600 Fax (607) 231-6650

JOB: 2020.4	487.001			
DESCRIPTION:	16'-0" x 7	7'-0" x 8'	-0" ID Vault	
SHEET NO.:	of			
CALCULATED BY:	CCFH	Date	01/13/2021	
CHECKED BY:	Da	te		
	_		-	

OK, As Provided > As Min.

COVER SLAB DESIGN UNIFORM LIVE LOAD MAX FILL ASTM C890 (Continued)

Shear Check:

		Vu@ d = $\gamma[\beta LL*Wll + \beta DL*Wdl] *$
	3.84 kips/ft	[(span/2) - d] =
ΟΚ	8.51 kips/ft	$\phi Vc =$

MINIMUM REINFORCING - ACI 318 - Table 7.6.1.1

Short Span

As, min = Max of ((0.0018*60,000)/fy) * Ag = 0.17 in²/ft <= Controls <u>OR</u> 0.0014 * Ag = 0.13 in²/ft

Long Span

As, min = Max of

((0.0018*60,000)/fy) * Ag =	0.17 in²/ft	<= Controls	OK As Provided > As Min
<u>OR</u> 0.0014 * Ag =	0.13 in²/ft		OR, AS PIOVIded > AS MIII.

JOB:	2020.	487.001			
DESCRIPT	ION:	16'-0" x	7'-0" x 8	'-0" ID Vault	
SHEET NC).:	of			
CALCULAT	ED BY:	CCFH	Date	01/13/2021	
CHECKED BY:		Da	ate		_

JOB: 2020.487.001	
DESCRIPTION: 16'-0" x 7'-0" x 8'-0" ID Vault	
SHEET NO.: of	
CALCULATED BY: CCFH Date 01/13/2021	
CHECKED BY: Date	

JOB:	2020.4	87.001			
DESCRIPTION: 16'-0" x 7'-0" x 8'-0" ID Vault					
SHEET N	10.:	of			
CALCULA	ATED BY:	CCFH	Date	01/13/2021	
CHECKED) BY:	BY: Dat			

	24 - 23				1
BASE SLAB DESI HINGED 4 SIDES PCA Rectangular Concre Case #10 (Continued)	GN S ete Tanks	.			
		Iransverse	-	Longitudinai	_
Moment, ΦΜ (ACI 318 T	able 21.2.2)= c=a/β1=	0.90 0.45]	0.90 0.45	(varies from 0.9 for tension controlled to 0.65 for compression controlled)
Reinforcing Strain $\mathcal{E}_t = (c$	d-c)/c*0.003 =	0.0415	tension controlled	0.0373	tension controlled
	$\mathcal{E}_{ty} = fy/E_s =$	0.002		0.002	
Cracking Reinford	ing Spacing	ACI 318 - Ta	able 24 3 2		
Clacking Keimore	Transvorce	ACI 510 - 18	abie 24.3.2	Longituding	
- ^o / b * d	<u>Transverse</u>			Longitudina	<u>1</u>
$\rho = AS / B d =$	0.003823			0.004217	
$\rho = n =$	0.027507			0.030343	
$k = \sqrt{(2\rho n + (\rho n)^2)} - \rho n =$	0.209			0.218	
J = 1 - (K/3) =	0.930			0.927	
M =	5.38 kip-ft			1.88 kip-ft	
fs = M / As j d =	33.83 ksi	OK		13.06 ksi	OK
s =15(40000/fs)-2.5c _c =	14.19 in	OK		36.74 in	OK
[and <=12(40000/fs)]					
MINIMUM REINFORCING -	ACI 318 -	Table 8.6.1	1		
<u>Transverse</u> As, min = Max of ((0.0018*60,000)/fy) * Ag = <u>OR</u> 0.0014 * Ag =	0.17 in²/ft 0.13 in²/ft	<= Controls	OK, As P	rovided > As	Min.
Longitudinal As, min = Max of ((0.0018*60,000)/fy) * Ag = <u>OR</u> 0.0014 * Ag =	0.17 in²/ft 0.13 in²/ft	<= Controls	OK, As P	Provided > As	Min.
					10-15-22

