COUNTY OF SUFFOLK

STEVEN BELLONE
SUFFOLK COUNTY EXECUTIVE

DEPARTMENT OF HEALTH SERVICES

GREGSON H. PIGOTT, M.D., M.P.H. Commissioner

October 17, 2022

Mr. Tamer Osman, P.E.
Delta Specialty Precast Concrete Engineers
860 Hooper Road
Endwell, NY 13760
Sent via e-mail: precast@delta-eas.com

Re: Fuji Clean CEN21 Precast Containment Vault

Dear Mr. Osman,
The Suffolk County Department of Health Services, Division of Environmental Quality, Office of Ecology has received and reviewed your design drawings and computations prepared for Roman Stone Construction Company, Project No. 2021.487.001, with your signature and sealed on 10/11/2022 and 10/15/2022 for the "SCDHS (CEN21) $166^{\prime}-0$ " x $7^{\prime}-0$ " x $8^{\prime}-0$ " ID Precast Containment Vault Designed for HS-20 Vehicle Live Load".

Based on the information provided, the Department of Health Services approves the use of this precast concrete structure as a containment vault for the Fuji Clean model CEN21 Innovative and Alternative Onsite Wastewater Treatment System (I/A OWTS) in traffic areas, with a burial depth of one (1) to three (3) feet below finished grade and water table below the bottom of the structure.

This approval requires that at least one readily accessible suction line (minimum $3 / 4$-inch diameter) be permanently installed within the containment vault extending from a maximum of 3-inches above the vault's bottom to its access riser, a maximum of 1-foot below finished grade. This suction line is required to be present to allow for purging of trapped storm-water with the use of a portable, self-priming pump as part of routine operations and maintenance servicing of the I/A OWTS.

A copy of this letter and the signed and sealed design report will remain on file in the Office of Wastewater Management for future reference.

If you have any questions, please do not hesitate to contact me at (631) 852-5811.

Sincerely,

Ken Zegel, P.E.
Principal Public Health Engineer
Chief, Office of Ecology
cc: John Sohngen, P.E. (SCDHS)
Scott Samuelson (Fuji Clean USA)
Kevin McGowin (Advanced Wastewater Solutions)
Bryan McGowin (Advanced Wastewater Solutions)

10/17/2022
APPROVAL DATE

DESIGN COMPUTATIONS FOR
SDCHS (CEN21)
$16{ }^{\prime}-0 "$ x $7^{\prime}-0^{\prime \prime} \times 8^{\prime}-0 "$ ID
Precast Containment Vault Designed for HS-20 Vehicle Live Load

PREPARED FOR:
Roman Stone Construction Company
85 South 4th Street Bay Shore, New York 11706

PREPARED BY:
 ADELTA

State License \# 111870
PREPARED FOR:

10-15-22

860 Hooper Road, Endwell, New York 13760
TEL: 607-231-6600 FAX: 607-231-6650
EMAIL: precast@delta-eas.com
www.delta-eas.com

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, ARCHITECT, LANDSCAPE ARCHITECT, OR LAND SURVEYOR, TO ALTER AN ITEM IN ANY WAY. IF AN ITEM BEARING THE STAMP OF A LICENSED PROFESSIONAL IS ALTERED, THE ALTERING ENGINEER, ARCHITECT, LANDSCAPE ARCHITECT, OR LAND SURVEYOR SHALL STAMP THE DOCUMENT AND INCLUDE THE NOTATION "ALTERED BY" FOLLOWED BY THEIR SIGNATURE, THE DATE OF SUCH ALTERATION, AND A SPECIFIC DESCRIPTION OF THE ALTERATION.

TYPICAL LAP	
LENGTH	

DESIGN NOTES

CORNER PLAN

(TO BE VERIFIED BY EOR)

1. DESIGN PER ACI 318-14
WITH HS-20 LOADING.
2. BAR COVER $=1$ " U.N.O.
3. EARTH COVER $=1^{\prime}-0 "$ TO $3^{\prime}-0 "$
4. EQUIVALENT FLUID PRESSURE $=39.6$ PCF
5. $\mathrm{f}^{\prime} \mathrm{C}$ @ 28 DAYS $=5,000 \mathrm{PSI}$
6. WATER TABLE $=$ BELOW BOTTOM OF STRUCTURE.
7. REINFORCEMENT = BAR PER ASTM A615, GRADE 60
8. TRIM OPENINGS WITH DIAGONAL \#4 BARS, EXTEND BARS MINIMUM 12" BEYOND OPENINGS, BEND BARS AS REQ'D TO MAINTAIN BAR COVER.
9. PROVIDE ADD'L REINFORCING AT OPENINGS EQUAL TO STEEL INTERRUPTED, HALF EACH SIDE AND IN THE SAME PLANE.

SPECIALTY PRECAST CONCRETE ENGINEERS 860 Hooper Road, Endwell, NY 13760 delta-eas.com
Phone (607) 231-6600
Fax (607) 231-6650

PRECAST VAULT DESIGN

 DESCRIPTION| Length (I.D.) | $=16.00 \mathrm{ft}$ |
| ---: | :--- |
| Width (I.D.) | $=7.00 \mathrm{ft}$ |
| Height (I.D.) | $=8.00 \mathrm{ft}$ |
| Wall Thickness | $=6.00 \mathrm{in}$ |
| Base Slab Thickness | $=8.00 \mathrm{in}$ |
| Cover Slab Thickness | $=8.00 \mathrm{in}$ |

TECHNICAL DATA

Earth Cover (Min.) =	0.00 ft
Earth Cover (Max) =	3.00 ft
Min Watertable Depth $=$	12.33 ft
ka	0.33
Unit Weight of Soil =	120 pcf
Equivalent Lateral Fluid Pressure $=$	0.040 kcf
LL Surcharge =	0.08 ksf
Depth Below F.G. to Apply Surcharge =	8.00 ft

Concrete Strength (f'c)
Unit Weight of Concrete
$=5.0 \mathrm{ksi}$
$\mathrm{E}_{\mathrm{c}}=57,000 * \sqrt{ } \mathrm{f}^{\prime} \mathrm{c}=4.03 \mathrm{E}+06 \mathrm{psi}$
Yield Strength (fy) $=60 \mathrm{ksi}$

$$
\mathrm{E}_{\mathrm{s}}=2.90 \mathrm{E}+07 \mathrm{psi}
$$

$$
n=E_{s} / E_{c}=7.2
$$

$\beta_{1}=0.8$
(Table 22.2.2.4.3)
$\mathrm{fr}=7.5 \mathrm{~V} \mathrm{f} \mathrm{c}=\quad 530 \quad \mathrm{psi} \quad$ (19.2.3.1)
Rho max $=(.75 \rho b)=0.0251531$

Design Wheel Load (Pw) =
Uniform Live Load =
$=16 \mathrm{kips}$

AASHTO HS20

Capacity Reduction Factors:

$$
\phi \text { - Shear }=0.75 \text { (Table 21.2.1) }
$$

Load Factors: (Table 5.3.1)

$\beta-\mathrm{LL}$	$=1.60$
$\beta-\mathrm{DL}$	$=1.20$
$\beta-\mathrm{EL}$	$=1.60$

References:

1. "Specifications for Highway Bridges, 17th Ed." - AASHTO
2."Building Code Requirements for Structural Concrete" - ACI 318-14.

$10-15-22$
2. "Rectangular Concrete Tanks, 5th Ed." - PCA Publication.
3. "Theory of Plates and Shells" - Timoshenko, S. 1959.
4. "Standard Practice for Minimum Structural Design Loading for Monolithic or

Sectional Precast Concrete Water and Wastewater Structures" - ASTM C890

SPECIALTY PRECAST CONCRETE ENGINEERS 860 Hooper Road, Endwell, NY 13760 delta-eas.com

JOB: 2020.487 .001			
DESCRIPTION:	$16^{\prime}-0^{\prime \prime} \times 7^{\prime}-0^{\prime \prime} \times 8^{\prime}-0^{\prime \prime}$ ID Vault		
SHEET NO.:	of		
CALCULATED BY:	CCFH	Date	$01 / 13 / 2021$
CHECKED BY:	Date		

Phone (607) 231-6600
Fax (607) 231-6650

EQUIVALENT LATERAL
 FLUID PRESSURE:

$\mathrm{ka}=[$ Unit Wt. of Soil =		(Worst Case)
	0.33	
	120 pcf	
Max. Fill Above Structure =	3.00 ft .	
Structure Inside Ht. =	8.00 ft .	
Top Slab Thickness =	8.00 in .	
Min. Watertable Depth =	12.33 ft .	
Lateral Pressure (Dry) = (Ka*Soil Wt.)	39.6 pcf	
Lateral Pressure (Sat.) = (Ka*(Soil Wt.-62.4pcf)+62.4pcf)	81.4 pcf	
Equivalent Lateral Pressure =	39.6 pcf	

10-15-22 SPECIALTY PRECAST CONCRETE ENGINEERS 860 Hooper Road, Endwell, NY 13760 delta-eas.com

JOB: 2020.487 .001		
DESCRIPTION:		$16^{\prime}-0^{\prime \prime} \times 7^{\prime}-0^{\prime \prime} \times 8^{\prime}-0 "$ ID Vault
SHEET NO.:	of	
CALCULATED BY:	CCFH	Date
CHECKED BY:	D1/13/2021	

Phone (607) 231-6600 Fax (607) 231-6650

Determine Uniform Load From Wheel Live Load for Various Fill Depths

Distance Between CL of Wheel and CL of Truck
Wheel Load: \qquad ft

Distribution Length $=1.75 \times$ Depth of Fill + Length of Dual Wheel Dimensions Distribution Width $=1.75 \times$ Depth of Fill + Width of Dual Wheel Dimensions

FIG. 4 Distributed Load Area
(REF "ASTM C 890-91")

10-15-22 JOB: 2020.487.001

DESCRIPTION:	$16^{\prime}-0 " \times 7^{\prime}-0 " \times 8^{\prime}-0 "$ ID Vault		
SHEET NO.:	of		
CALCULATED BY:	CCFH	Date	$01 / 13 / 2021$
CHECKED BY:	Date		

Fax (607) 231-6650

SPECIALTY PRECAST CONCRETE ENGINEERS
860 Hooper Road, Endwell, NY 13760

l	JOB: 2020.487 .001	
DESCRIPTION:		$16^{\prime}-0^{\prime \prime} \times 7^{\prime}-0^{\prime \prime} \times 8^{\prime}-0^{\prime \prime}$ ID Vault
SHEET NO.:	of	
CALCULATED BY:	CCFH	Date
CHECKED BY:	$01 / 13 / 2021$	

Phone (607) 231-6600
Fax (607) 231-6650

COVER SLAB DESIGN

AASHTO 3.24.6
(Continued)

MINIMUM REINFORCING - ACI 318 - Table 7.6.1.1

Short Span

As, min = Max of

$$
\begin{aligned}
\left(\left(0.0018^{*} 60,000\right) / f y\right) & * \mathrm{Ag}
\end{aligned}=0.17 \mathrm{in}^{2} / \mathrm{ft} \quad<=\text { Controls } \quad \text { OK, As Provided }>\text { As Min. }
$$

Long Span

As, min = Max of

$$
\begin{aligned}
((0.0018 * 60,000) / \mathrm{fy}) * \mathrm{Ag} & =0.17 \mathrm{in} 2^{2} \mathrm{ft} \\
\text { OR } 0.0014 * \mathrm{Ag} & =0.13 \mathrm{in}^{2} / \mathrm{ft}
\end{aligned} \quad \text { Controls } \quad \text { OK, As Provided }>\text { As Min. }
$$

10-15-22

```
```

 COVER SLAB DESIGN
    ```
```

 COVER SLAB DESIGN
 UNIFORM LIVE LOAD
 UNIFORM LIVE LOAD
 MAX FILL
 MAX FILL
 ASTM C890
 ASTM C890
 Length (I.D.) = 16.00 ft.
 Length (I.D.) = 16.00 ft.
 Width (I.D.) = 7.00 ft.
 Width (I.D.) = 7.00 ft.
 Wall Thickness = 6.00 in
 Wall Thickness = 6.00 in
 Slab Thickness = 8.00 in
 Slab Thickness = 8.00 in
 Earth Cover = 3.00 ft.
 Earth Cover = 3.00 ft.
 Bar cover = 1.00 in
 Bar cover = 1.00 in
 | | Short Span |
| ---: | :--- |
| Span | $=$7.50 ft
 Dead Loads: Soil |
| Concrete | $=0.36 \mathrm{ksf}$ |
| | 0.10 ksf |
| Additional Uniform Dead Load | $=0.00 \mathrm{ksf}$ |
| Total (wdl) | $=0.46 \mathrm{ksf}$ |

 2-Way slab fac. (Distributed) = 1.000 (AASHTO 3.24.6.1)
 2-Way slab fac. (Distributed) = 1.000 (AASHTO 3.24.6.1)
 Mdl=wdl I }\mp@subsup{}{}{2}/8\mathrm{ * (2-way slab factor) = 3.23 kip-ft
Mdl=wdl I }\mp@subsup{}{}{2}/8\mathrm{ * (2-way slab factor) = 3.23 kip-ft
DLA = 78.55 sf
DLA = 78.55 sf
WII= 0.407 ksf
WII= 0.407 ksf
MII=wll I / / * (2-way slab factor) = 2.86 kip-ft
MII=wll I / / * (2-way slab factor) = 2.86 kip-ft
Mu}=\gamma[\mp@subsup{\beta}{(\textrm{L}+1)}{}*\textrm{Mll}+\mp@subsup{\beta}{\textrm{D}}{}*\textrm{Mdl}]=8.46 kip-f

```
Mu}=\gamma[\mp@subsup{\beta}{(\textrm{L}+1)}{}*\textrm{Mll}+\mp@subsup{\beta}{\textrm{D}}{}*\textrm{Mdl}]=8.46 kip-f
```


Long Span 10-15-22

$$
16.50 \mathrm{ft} .
$$

$$
0.36 \text { ksf }
$$

$$
0.10 \text { ksf }
$$

$$
0.46 \text { ksf }
$$ 0.000

$$
0.00 \text { kip-ft }
$$

$$
78.55 \mathrm{sf}
$$

$$
0.407 \text { ksf }
$$

$$
0.00 \text { kip-ft }
$$

$$
0.00 \text { kip-ft }
$$

6.06 in

$$
\mathrm{d}=6.69 \mathrm{in}
$$

```
Req. Bar Size and Spacing
Short Span: As = \(0.61 \mathrm{in} . \mathrm{sq} / \mathrm{ft}\). Long Span: As = \(0.31 \mathrm{in} . \mathrm{sq} / \mathrm{ft}\).
\begin{tabular}{|c|c|c|c|}
\hline Use & \(\# 5\) & \(@\) & 6.0 in \\
\hline Use & \(\# 5\) & \(@\) & 12.0 in \\
\hline
\end{tabular}
\[
\begin{equation*}
\rho=\left[1-\left(\sqrt{1-\frac{2 \bullet M_{u}}{\phi b d^{2} \bullet .85 f^{\prime} c}}\right)\right] \cdot \frac{.85 f^{\prime} c}{f_{y}}=0.00359605 \tag{0}
\end{equation*}
\]
\[
\rho^{*} n=0.02587405
\]
Flexure Check:
Moment, ФМ
```



```
\begin{tabular}{|c|}
\hline 0.361 in \\
\hline 0.360
\end{tabular}
0.45
Reinforcing Strain \(\varepsilon_{\mathrm{t}}=(\mathrm{d}-\mathrm{c}) / \mathrm{c} * 0.003=0.0192\)
tension controlled
0.0373 tension controlled
\[
\varepsilon_{\mathrm{ty}}=\mathrm{fy} / \mathrm{E}_{\mathrm{s}}=0.002
\]
\(\phi \mathrm{Mn}=\phi^{*} \mathrm{As}^{*} \mathrm{Fy}{ }^{*}(\mathrm{~d}-(\mathrm{a} / 2))=17.47 \mathrm{kip}\)-ft OK
Cracking Reinforcing Spacing: ACI 318 - Table 24.3.2
\begin{tabular}{|c|c|c|c|c|}
\hline \(k=\sqrt{ }\left(2 \rho n+(\rho n)^{2}\right)-\rho n=\) & 0.203 & & 0.000 & \\
\hline \(\mathrm{j}=1-(\mathrm{k} / 3)=\) & 0.932 & & 1.000 & \\
\hline \(\mathrm{M}=\mathrm{Mdl}+\mathrm{Mll}=\) & \(6.10 \mathrm{kip}-\mathrm{ft}\) & & 0.00 kip-ft & \\
\hline \(\mathrm{fs}=\mathrm{M} / \mathrm{As} \mathrm{j} \mathrm{d}=\) & 19.13 ksi & OK & 0.00 ksi & OK \\
\hline \(\mathrm{s}=\min \left(15(40000 / \mathrm{fs})-2.5 \mathrm{c}_{\mathrm{c}}, 12^{*} 40000 / \mathrm{f}_{\mathrm{s}}=\right.\) & 25 in & OK & 99 in & OK \\
\hline
\end{tabular}
```

```
                    Short Span
```

 Short Span
 = 0.36 ksf
 = 0.36 ksf
 16.50 ft.
 16.50 ft.
 0 . 3 6 ~ k s f
 0 . 3 6 ~ k s f
 0 . 1 0 ~ k s f
 0 . 1 0 ~ k s f
 0 . 0 0 ~ k s f
 0 . 0 0 ~ k s f
 0 . 4 6 ~ k s f
    ```
                        0 . 4 6 ~ k s f
```

 JOB: 2020.487.001
 DESCRIPTION: \(16^{\prime}-0{ }^{\prime \prime} \times 7\) 7'-0" x 8'-0" ID Vault
 SHEET NO.:
 CALCULATED BY: CCFH Date 01/13/2021
 CHECKED BY:
 Date
 SPECIALTY PRECAST CONCRETE ENGINEERS 860 Hooper Road, Endwell, NY 13760

JOB: 2020.487.001
DESCRIPTION: $16^{\prime}-00^{\prime \prime} \times 7^{\prime}-0{ }^{\prime \prime} \times 8^{\prime}-0$ " ID Vault
SHEET NO.: of
CALCULATED BY: CCFH Date 01/13/2021
CHECKED BY:
Date
delta-eas.com
Phone (607) 231-6600
Fax (607) 231-6650

COVER SLAB DESIGN

UNIFORM LIVE LOAD
MAX FILL
ASTM C890
(Continued)

Shear Check:

$\mathrm{Vu} @ \mathrm{~d}=\gamma\left[\beta \mathrm{LL} * \mathrm{Wll}+\beta \mathrm{DL}^{*} \mathrm{Wdl}\right] *$

$$
\begin{aligned}
{[(\mathrm{span} / 2)-\mathrm{d}] } & =3.84 \mathrm{kips} / \mathrm{tt} \\
\phi \mathrm{Vc} & =8.51 \mathrm{kips} / \mathrm{tt} \quad \mathrm{OK}
\end{aligned}
$$

MINIMUM REINFORCING - ACI 318 - Table 7.6.1.1

Short Span

As, min = Max of

$$
\begin{aligned}
\left(\left(0.0018^{*} 60,000\right) / f y\right) & * \mathrm{Ag}
\end{aligned}=0.17 \mathrm{in}^{2} / \mathrm{ft} \quad<=\text { Controls } \quad \text { OK, As Provided }>\text { As Min. } .
$$

Long Span

As, min = Max of

$$
\begin{aligned}
&\left(\left(0.0018^{*} 60,000\right) / f y\right) \text { * } \mathrm{Ag}=0.17 \mathrm{in}^{2} / \mathrm{ft} \quad<=\text { Controls } \quad \text { OK, As Provided }>\text { As Min. } \\
& \text { OR } 0.0014^{*} \mathrm{Ag}=0.13 \mathrm{in}^{2} / \mathrm{ft}
\end{aligned}
$$

JOB: 2020.487 .001			
DESCRIPTION:	$16^{\prime}-0 " \times 7^{\prime}-0 " \times 8^{\prime}-0 "$ ID Vault		
SHEET NO.:	of		
CALCULATED BY:	CCFH	Date	$01 / 13 / 2021$
CHECKED BY:	Date		

Height	$=2.00 \mathrm{ft}$
Length b	$=$
Width c	$=16.00 \mathrm{ft}$
7.00 ft	
Wall Thickness	$=$
	6.00 in

Use Interior Support (Y or N) N
Distribution Factor $(\mathrm{I})=0.304$
Distribution Factor $(\mathrm{s})=0.696$
Fixed end moment $(\mathrm{I})=9.01$ kip-ft
Fixed end moment $(\mathrm{s})=1.72 \mathrm{kip}-\mathrm{ft}$
Simple span moment $($ long $)=13.52 \mathrm{kip}-\mathrm{ft}$
Simple span moment (short) $=2.59 \mathrm{kip}-\mathrm{ft}$
Balanced moment at corner $(-)=6.79 \mathrm{kip}-\mathrm{ft}$
Pos. moment @ midspan (+) = 6.72 kip-ft
OUTSIDE FACE

Horizontal lines indicate top \& bottom of riser wall

Lateral Earth Pressure

$$
\text { Eq. Lat. Press. }=0.040 \mathrm{kcf}
$$

$$
\mathrm{W} 2=0.38 \mathrm{ksf}
$$

$$
\mathrm{W} 3=0.46 \mathrm{ksf}
$$

Wavg = $\quad 0.42 \mathrm{ksf}$
No Surcharge

	Mu	$\phi \mathrm{Mn}$	Bar Sz	Sp	d	As	a
Horizontal (-)	10.87 kip-ft	11.67 kip-ft	\# 4	4.0 in	4.75 in	0.59 in. sq/ft.	0.69 in

Moment, $\Phi \mathrm{M}(\mathrm{ACl} 318$ Table 21.2.2)	$=$ 0.9 $\mathrm{c}=\mathrm{a} / \beta 1$ $=$ (varies from 0.9 for tension controlled to 0.65 for compression controlled)
Reinforcing Strain $\varepsilon_{\mathrm{t}}=(\mathrm{d}-\mathrm{c}) / \mathrm{c}^{*} 0.003=$	0.0135
$\varepsilon_{\mathrm{ty}}=\mathrm{fy} / \mathrm{E}_{\mathrm{s}}$	$=$
tension controlled	

Vu@ d $=\gamma[\beta E L * W a v g]$ * $[($ span $/ 2)-\mathrm{d}]=$	5.14 kips	$\phi \vee c=$ $\phi \mathrm{Vc}>\mathrm{Vu}:$	$6.05 \mathrm{kips}$ OK
Inflection pt. (from corner)	2.36 ft	$\mathrm{ldb}=$	12 in
Extend bar from corner	3.36 ft	Lap ($1.7^{*} \mathrm{ldb}$) $=$	21 in

Cracking Reinforcing Spacing: ACI 318 - Table 24.3.2
$\rho=A s / b * d=0.01033$
$\rho^{*} n=0.07436$
$k=\sqrt{ }\left(2 \rho n+(\rho n)^{2}\right)-\rho n=0.318$
$j=1-(k / 3)=0.894$
$\mathrm{M}=\mathrm{Mdl}+\mathrm{MII}=6.79 \mathrm{kip}-\mathrm{ft}$
$\mathrm{fs}=\mathrm{M} / \mathrm{As} \mathrm{jd}=32.60 \mathrm{ksi}$
$\mathrm{s}=15(40000 / \mathrm{fs})-2.5 \mathrm{c}_{\mathrm{c}}=14.73$ in $\quad[$ and $<=12(40000 / \mathrm{fs})] \quad$ OK

10-15-22

JOB: 2020.487 .001			
DESCRIPTION:	$16^{\prime}-0^{\prime \prime} \times 7^{\prime}-0^{\prime \prime} \times 8^{\prime}-0^{\prime \prime}$ ID Vault		
SHEET NO.:	of		
CALCULATED BY:	CCFH	Date	$01 / 13 / 2021$
CHECKED BY:	Date		

Fax (607) 231-6650

Moment Distribution Riser (cont.)

MINIMUM REINFORCING - ACI 318 - Table 8.6.1.1

Horizontal

As, $\min =$ Max of

$$
\begin{aligned}
\left(\left(0.0018^{*} 60,000\right) / \mathrm{fy}\right)^{*} \mathrm{Ag} & =0.13 \mathrm{in}^{2} / \mathrm{ft} \quad<=\text { Controls } \\
\text { OR } 0.0014^{*} \mathrm{Ag} & =0.10 \mathrm{in}^{2} / \mathrm{ft}
\end{aligned} \quad \text { OK, As Provided }>\text { As Min. }
$$

Vertical

Minimum reinforcing requirement does not apply per ACI R11.6.1
INSIDE FACE
Bar Cover = \qquad

Horizontal (

Mu	$\phi \mathrm{Mn}$	Bar Sz	Sp	d	As	a
$10.76 \mathrm{kip}-\mathrm{ft}$	$11.67 \mathrm{kip}-\mathrm{ft}$	$\# 4$	4.0 in	4.750 in	$0.59 \mathrm{in} . \mathrm{sq} / \mathrm{ft}$.	0.69 in

$$
\begin{aligned}
& \text { Moment, } \Phi \mathrm{M}(\mathrm{ACI} 318 \text { Table 21.2.2) }=\begin{array}{ccl}
\mathrm{c}=\mathrm{a} / \beta 1= & 0.9 & \begin{array}{l}
\text { (varies from } 0.9 \text { for tension } \\
\text { controlled to } 0.65 \text { for compression } \\
\text { controlled) }
\end{array} \\
\text { Reinforcing Strain } \varepsilon_{\mathrm{t}}=(\mathrm{d}-\mathrm{c}) / \mathrm{c}^{*} 0.003 & = & 0.0135 \\
\varepsilon_{\mathrm{ty}}=\mathrm{fy} / \mathrm{E}_{\mathrm{s}} & = & 0.002
\end{array} \\
& \text { tension controlled }
\end{aligned}
$$

Cracking Check:

$$
\rho=A s / b^{*} d=0.01033
$$

$$
\rho^{*} n=0.07436
$$

$$
k=\sqrt{ }\left(2 \rho n+(\rho n)^{2}\right)-\rho n=\quad 0.318
$$

$$
j=1-(k / 3)=0.894
$$

$$
\mathrm{M}=\mathrm{Mdl}+\mathrm{MII}=6.72 \mathrm{kip}-\mathrm{ft}
$$

$$
\mathrm{fs}=\mathrm{M} / \mathrm{As} \mathrm{jd}=32.26 \mathrm{ksi} \quad \mathrm{OK}
$$

$$
\mathrm{s}=15(40000 / \mathrm{fs})-2.5 \mathrm{c}_{\mathrm{c}}=14.88 \text { in } \quad[\text { and }<=12(40000 / \mathrm{fs})] \quad \text { OK }
$$

MINIMUM REINFORCING - ACI 318 - Table 8.6.1.1

Horizontal

As, min = Max of

$$
\begin{aligned}
\left.\left(\left(0.0018^{*} 60,000\right) / f y\right)\right)^{*} \mathrm{Ag} & =0.13 \mathrm{in}^{2} / \mathrm{ft} \quad<=\text { Controls } \\
\text { OR } 0.0014^{*} \mathrm{Ag} & =0.10 \mathrm{in}^{2} / \mathrm{ft}
\end{aligned} \quad \text { OK, As Provided }>\text { As Min. }
$$

Vertical

Minimum reinforcing requirement does not apply per ACI R11.6.1

10-15-22

SPECIALTY PRECAST CONCRETE ENGINEERS 860 Hooper Road, Endwell, NY 13760
delta-eas.com
Phone (607) 231-6600
Fax (607) 231-6650

BASE SLAB DESIGN
 HINGED 4 SIDES
 PCA Rectangular Concrete Tanks
 Case \#10

Net upward bearing pressure:
Ref: ASTM C857 Sec 4.3
$\begin{array}{rll}\text { Dead Load, fbdl } & =0.67 \mathrm{ksf} & \quad<==\text { Controls } \\ \text { Hydrostatic, fbhyd } & =0.00 \mathrm{ksf} & (0.00 \mathrm{ft} * 0.0624 \mathrm{kcf})\end{array}$

$$
\begin{aligned}
\text { Live Load, fbll } & =+0.35 \mathrm{ksf} \\
\mathrm{w} & =\begin{array}{l}
1.02 \mathrm{ksf} \\
\mathrm{Wu}
\end{array}=1.37 \mathrm{ksf}
\end{aligned}
$$

Top cage

Transverse Coeff.
Longitudinal Coeff.
Bar cover
Transverse Moment $=\quad 5.38 \mathrm{kip}-\mathrm{ft}$

JOB: 2020.487.001			
DESCRIPTION: 16'-0" x 7'-0" x 8'-0" ID Vault			
SHEET NO.: $\quad 16-0 \times 7 \times 8$ of			
CALCULATED BY:	CCFH	Date	01/13/2021
CHECKED BY:			

SPECIALTY PRECAST CONCRETE ENGINEERS 860 Hooper Road, Endwell, NY 13760 delta-eas.com
Phone (607) 231-6600
Fax (607) 231-6650
BASESLAB DESGN
HINGED 4 SIDES
PCA Rectangular Concrete Tanks

Case \#10

(Continued)

Longitudinal
0.90
0.45

(varies from 0.9 for tension controlled to 0.65 for compression controlled)
Reinforcing Strain $\varepsilon_{\mathrm{t}}=(\mathrm{d}-\mathrm{c}) / \mathrm{c}^{*} 0.003=0.0415$ tension controlled 0.0373 tension controlled $\varepsilon_{\mathrm{ty}}=\mathrm{fy} / \mathrm{E}_{\mathrm{s}}=0.0020 .002$
Cracking Reinforcing Spacing: ACI 318 - Table 24.3.2

$$
\begin{array}{rcc}
\rho=\mathrm{As} / \mathrm{b} * \mathrm{~d}= & \frac{\text { Transverse }}{0.003823} \\
\rho^{*} \mathrm{n}= & 0.027507 & \\
\mathrm{k}=\sqrt{ }\left(2 \rho \mathrm{n}+(\rho \mathrm{n})^{2}\right)-\rho \mathrm{n}= & 0.209 & \\
\mathrm{j}=1-(\mathrm{k} / 3)= & 0.930 & \\
\mathrm{M}= & 5.38 \mathrm{kip} \mathrm{ft} & \\
\mathrm{fs}=\mathrm{M} / \mathrm{As} \mathrm{jd}= & 33.83 \mathrm{ksi} & \mathrm{OK} \\
\mathrm{~s}=15(40000 / \mathrm{fs})-2.5 \mathrm{c}_{\mathrm{c}}= & 14.19 \mathrm{in} & \mathrm{OK} \\
\text { [and }<=12(40000 / \mathrm{fs})] & &
\end{array}
$$

MINIMUM REINFORCING - \quad ACI 318 - Table 8.6.1.1

Transverse

JOB: 2020.487 .001		
DESCRIPTION:	$16^{\prime}-0 " \times 7^{\prime}-0 " \times 8^{\prime}-0 "$ ID Vault	
SHEET NO.:	of	
CALCULATED BY:	CCFH	Date
CHECKED BY:	01/13/2021	

As, min = Max of

$\left(\left(0.0018^{*} 60,000\right) / \mathrm{fy}\right)$	$\mathrm{Ag}=$
OR $\quad 0.0014^{*} \mathrm{Ag}$	$=0.17 \mathrm{in}^{2} / \mathrm{ft} \quad<=$ Controls $\quad 0.13 \mathrm{in}^{2} / \mathrm{ft}$

Longitudinal
As, $\min =$ Max of

$$
\begin{aligned}
\left(\left(0.0018^{*} 60,000\right) / \mathrm{fy}\right) & * \mathrm{Ag}
\end{aligned}=0.17 \mathrm{in}^{2} / \mathrm{ft} \quad<=\text { Controls } \quad \text { OK, As Provided }>\text { As Min. }
$$

$10-15-22$

